博客
关于我
I/O控制方式
阅读量:403 次
发布时间:2019-03-05

本文共 965 字,大约阅读时间需要 3 分钟。

I/O控制方式

程序直接控制方式

CPU干预

很频繁,I/O操作开始之前,完成之后需要CPU介入,而且在等待I/O完成的过程中CPU需要不断得轮询检查。

数据的流向

每次读/写一个字

读操作(数据输入):I/O设备->CPU->内存
写操作(数据输出):内存->CPU->I/O设备

流程图

在这里插入图片描述

主要缺点和主要优点

优点:实现简单。在读/写指令之后,加上实现循环检查的一系列指令即可(因此才称为“程序直接控制方式”)

缺点:CPU和1/0设备只能串行工作,CPU需要一直轮询检查长期处于“忙等”状态,CPU利用率低。

中断驱动方式

CPU干预

每次1/0操作开始之前、完成之后需要CPU介入。等待1/0完成的过程中CPU可以切换到别的进程执行。

数据的流向

每次读/写一个字

读操作(数据输入): I/0设备->CPU->内存
写操作(数据输出): 内存->CPU->I/0设备

流程图

在这里插入图片描述

主要缺点和主要优点

优点:与“程序直接控制方式”相比,在“中断驱动方式”中,1/0控制器会通过中断信号主动报告1/0已完成,CPU不再需要不停地轮询。 CPU和1/0设备可并行工作,CPU利用率得到明显提升。

缺点:每个字在I/O设备与内存之间的传输,都需要经过CPU。而频繁的中断处理会消耗比较多的CPU时间。

DMA方式

CPU干预

仅在传送一个或多个数据块的开始和结束时,才需要CPU干预

数据的流向

每次读/写一个块

读操作(数据输入): I/0设备->内存
写操作(数据输出): 内存->I/0设备

流程图

在这里插入图片描述

主要缺点和主要优点

优点:数据传输以“块”为单位,CPU介入频率进一步降低。数据的传输不再需要先经过CPU再写入内存,数据传输效率进一步增加。CPU和1/0设备的并行性得到提升。

缺点:CPU每发出一条1/0指令,只能读/写一个或多个连续的数据块。

通道控制方式

CPU干预

极低,通道会根据CPU的指示执行相应的通道程序,只有完成一组数据块的读/写后才需要发出中断信号,请求CPU干预。

数据的流向

每次读/写一组数据块

读操作(数据输入):I/0设备->内存
写操作(数据输出):内存->I/0设备

流程图

在这里插入图片描述

主要缺点和主要优点

缺点:实现复杂,需要专门的通道硬件支持

优点:CPU、通道、1/0设备可并行工作,资源利用率很高

转载地址:http://uudzz.baihongyu.com/

你可能感兴趣的文章
MangoDB4.0版本的安装与配置
查看>>
Manjaro 24.1 “Xahea” 发布!具有 KDE Plasma 6.1.5、GNOME 46 和最新的内核增强功能
查看>>
mapping文件目录生成修改
查看>>
MapReduce程序依赖的jar包
查看>>
mariadb multi-source replication(mariadb多主复制)
查看>>
MariaDB的简单使用
查看>>
MaterialForm对tab页进行隐藏
查看>>
Member var and Static var.
查看>>
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
MFC模态对话框和非模态对话框
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB可视化客户端管理工具之NoSQLbooster4mongo
查看>>